This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294160 #6 Nov 12 2017 06:13:19 %S A294160 1,1,4,29,274,3145,42294,651227,11295242,217954807,4632600152, %T A294160 107572674851,2710093290348,73635362430373,2146667383237600, %U A294160 66842659455306545,2214207331808233390,77752904712525291757,2885163506590219810722,112808263228714108970879 %N A294160 Column 0 of triangle A291844. %o A294160 (PARI) %o A294160 A291843_ser(N, t='t) = { %o A294160 my(x='x+O('x^N), y=1, y1=0, n=1, %o A294160 dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1)); %o A294160 while (n++, %o A294160 y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) + %o A294160 (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn; %o A294160 if (y1 == y, break); y = y1; ); y; %o A294160 }; %o A294160 A291844_ser(N, t='t) = { %o A294160 my(z = A291843_ser(N+1, t)); %o A294160 ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2); %o A294160 }; %o A294160 A291844_kol(k, N=20) = { %o A294160 my(s = A291844_ser(N+1+3*k\2, t='t + O('t^(k+1)))); %o A294160 Ser(polcoeff(s, k,'t), 'x, N); %o A294160 }; %o A294160 Vec(A291844_kol(0)) %Y A294160 Cf. A291844. %K A294160 nonn %O A294160 0,3 %A A294160 _Gheorghe Coserea_, Nov 03 2017