A294170 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 12, 26, 53, 97, 171, 292, 490, 813, 1337, 2187, 3564, 5794, 9404, 15247, 24703, 40005, 64766, 104832, 169662, 274561, 444294, 718929, 1163300, 1882309, 3045692, 4928087, 7973868, 12902047, 20876010, 33778155, 54654266, 88432525, 143086898, 231519533
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(2) + 4 = 12 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A294170 *)
Comments