This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294173 #58 Aug 18 2019 16:08:01 %S A294173 34,55,919,1241,4149,4188,7170,12566,15086,24882,25020,26610,51836, %T A294173 53964,59988,77058,143370,150420,167561,170562,205728,215070,220818, %U A294173 418308,564858,731321,907255,910316,986154,1239870,1569336,1622914,1841861,1887240,1979307,2229012,2262108 %N A294173 Numbers k whose nearest neighbors have the same number of divisors, the same number of distinct prime factors, and the same sum of divisors. %C A294173 mu(k-1) = mu(k+1), where mu(k) = A008683(k), since k-1 and k+1 have the same number of distinct prime factors. %C A294173 tau(k-1) = tau(k+1) = abs(phi(k-1) - phi(k+1)) iff abs(phi(k-1) - phi(k+1)) = 4, where phi(j) is A000010. When tau(j) = 4 omega(j) = 2 and phi(j), the product of two even numbers is divisible by 4. %C A294173 For known elements: %C A294173 - sigma(k +- 1) and tau(k +- 1) the greatest common divisor is 4. %C A294173 - sigma(k +- 1) is divisible by tau(k +- 1). %C A294173 - the digital root of sigma(k +- 1) is either 3 or 9. %C A294173 - the prime signature of k +- 1 is the same (see question below). %C A294173 The first prime terms are 919, 110495719, 2587274227, 3908452759, 4020447619, and 9314901619. - _Giovanni Resta_, Feb 12 2018 %C A294173 Are the prime signatures of k +- 1 always the same? - _Andrey Zabolotskiy_, Feb 14 2018 %H A294173 Charles R Greathouse IV, <a href="/A294173/b294173.txt">Table of n, a(n) for n = 1..1478</a> %e A294173 34 is in the sequence because tau(33)=tau(35)=4, omega(33)=omega(35)=2, and sigma(33)=sigma(35)=48. %e A294173 919 is in the sequence because tau(918)=tau(920)=16, omega(918)=omega(920)=3, and sigma(918)=sigma(920)=2160. %p A294173 with(numtheory): %p A294173 select(k->sigma(k-1)=sigma(k+1) and mobius(k-1)=mobius(k+1) and tau(k-1)=tau(k+1), [$2..2000000]); # _Muniru A Asiru_, Feb 17 2018 %t A294173 1 + Position[Partition[Array[{DivisorSigma[0, #], DivisorSigma[1, #], PrimeOmega[#]} &, 10^6], 3, 1], _?(#[[1]] == +#[[-1]] &), {1}, Heads -> False][[All, 1]] (* _Michael De Vlieger_, Feb 17 2018 *) %o A294173 (GAP) Filtered([2..2000000],k->Sigma(k-1)=Sigma(k+1) and Number(FactorsInt(k-1))=Number(FactorsInt(k+1)) and Tau(k-1)=Tau(k+1)); # _Muniru A Asiru_, Feb 17 2018 %o A294173 (PARI) list(lim)=my(v=List(),k2=7,s2=sigma(k2),k1=8,s1=sigma(k1),s); forfactored(k=9,1+lim\1, s=sigma(k); if(s==s2 && numdiv(k)==numdiv(k2) && omega(k)==omega(k2), listput(v,k1[1])); k2=k1; k1=k; s2=s1; s1=s); Vec(v) \\ _Charles R Greathouse IV_, Feb 20 2018 %Y A294173 Intersection of A067888, A088070, and A055574. %Y A294173 Cf. A229254, A008683, A000010. %K A294173 nonn %O A294173 1,1 %A A294173 _Torlach Rush_, Feb 10 2018