cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294182 Coefficients in expansion of E_4/E_6.

This page as a plain text file.
%I A294182 #19 Jun 03 2018 07:49:29
%S A294182 1,744,393768,210962976,112966533672,60492691156464,32393330061359904,
%T A294182 17346357971979746880,9288829947058862457384,
%U A294182 4974090926254339741926216,2663584184830281769743846768,1426327104764356980195826984032
%N A294182 Coefficients in expansion of E_4/E_6.
%H A294182 Seiichi Manyama, <a href="/A294182/b294182.txt">Table of n, a(n) for n = 0..366</a>
%F A294182 Convolution inverse of A288261.
%F A294182 a(n) ~ 8 * Gamma(3/4)^8 * exp(2*Pi*n) / (3*Pi^2). - _Vaclav Kotesovec_, Jun 03 2018
%t A294182 terms = 12;
%t A294182 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A294182 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t A294182 E4[x]/E6[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 23 2018 *)
%Y A294182 Cf. A000706, A004009 (E_4), A013973 (E_6), A288261.
%Y A294182 E_k/E_{k+2}: A294181 (k=2), this sequence (k=4), A294183 (k=6).
%K A294182 nonn
%O A294182 0,2
%A A294182 _Seiichi Manyama_, Feb 11 2018