A294200 Primes p such that 2^p - 2 is a practical number.
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 151, 157, 163, 181, 191, 193, 197, 199, 211, 223, 229, 233, 241, 251, 257, 271, 277, 281, 283, 307, 311, 313, 331, 337, 349, 353
Offset: 1
Keywords
Examples
a(1) = 2 since 2 is prime and 2^2 - 2 = 2 is practical. a(2) = 3 since 3 is prime and 2^3 - 2 = 6 is practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..77
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017.
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n]; Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]); Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]; pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0); tab={};Do[If[pr[2^(Prime[k])-2],tab=Append[tab,Prime[k]]],{k,1,71}];Print[tab]
Comments