This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294201 #23 Sep 20 2019 13:10:09 %S A294201 1,0,1,1,1,3,2,0,1,1,3,10,12,3,9,3,0,1,1,7,33,59,30,67,42,6,18,4,0,1, %T A294201 1,15,106,270,216,465,420,120,235,100,10,30,5,0,1,1,31,333,1187,1365, %U A294201 3112,3675,1596,2700,1655,330,605,195,15,45,6,0,1 %N A294201 Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles (1 <= k <= 3n). %C A294201 T(n,k) = coefficient of x^k for A(3,n)(x) in Gilbert and Riordan's article. - _Robert A. Russell_, Jun 13 2018 %H A294201 Andrew Howroyd, <a href="/A294201/b294201.txt">Table of n, a(n) for n = 1..1395</a> %H A294201 E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665. %F A294201 T(n,k) = [n==0 & k==0] + [n>0 & k>0] * (k*T(n-1,k) + T(n-1,k-1) + T(n-1,k-3)). - _Robert A. Russell_, Jun 13 2018 %F A294201 T(n,k) = n!*[x^n*y^k] exp(Sum_{d|3} y^d*(exp(d*x) - 1)/d). - _Andrew Howroyd_, Sep 20 2019 %e A294201 Triangle begins: %e A294201 1, 0, 1; %e A294201 1, 1, 3, 2, 0, 1; %e A294201 1, 3, 10, 12, 3, 9, 3, 0, 1; %e A294201 1, 7, 33, 59, 30, 67, 42, 6, 18, 4, 0, 1; %e A294201 1, 15, 106, 270, 216, 465, 420, 120, 235, 100, 10, 30, 5, 0, 1; %e A294201 ... %e A294201 Case n=2: Without loss of generality the permutation of two 3-cycles can be taken as (123)(456). The second row is [1, 1, 3, 2, 0, 1] because the set partitions that are invariant under this permutation in increasing order of number of parts are {{1, 2, 3, 4, 5, 6}}; {{1, 2, 3}, {4, 5, 6}}; {{1, 4}, {2, 5}, {3, 6}}, {{1, 5}, {2, 6}, {3, 4}}, {{1, 6}, {2, 4}, {3, 5}}; {{1, 2, 3}, {4}, {5}, {6}}, {{1}, {2}, {3}, {4, 5, 6}}, {{1}, {2}, {3}, {4}, {5}, {6}}. %p A294201 T:= proc(n, k) option remember; `if`([n, k]=[0, 0], 1, 0)+ %p A294201 `if`(n>0 and k>0, k*T(n-1, k)+T(n-1, k-1)+T(n-1, k-3), 0) %p A294201 end: %p A294201 seq(seq(T(n, k), k=1..3*n), n=1..8); # _Alois P. Heinz_, Sep 20 2019 %t A294201 T[n_, k_] := T[n,k] = If[n>0 && k>0, k T[n-1,k] + T[n-1,k-1] + T[n-1,k-3], Boole[n==0 && k==0]] (* modification of Gilbert & Riordan recursion *) %t A294201 Table[T[n, k], {n,1,10}, {k,1,3n}] // Flatten (* _Robert A. Russell_, Jun 13 2018 *) %o A294201 (PARI) \\ see A056391 for Polya enumeration functions %o A294201 T(n,k)={my(ci=PermCycleIndex(CylinderPerms(3,n)[2])); StructsByCycleIndex(ci,k) - if(k>1,StructsByCycleIndex(ci,k-1))} %o A294201 for (n=1, 6, for(k=1, 3*n, print1(T(n,k), ", ")); print); %o A294201 (PARI) %o A294201 G(n)={Vec(-1+serlaplace(exp(sumdiv(3, d, y^d*(exp(d*x + O(x*x^n))-1)/d))))} %o A294201 { my(A=G(6)); for(n=1, #A, print(Vecrev(A[n]/y))) } \\ _Andrew Howroyd_, Sep 20 2019 %Y A294201 Row sums are A002874. %Y A294201 Column k=3 gives A053156. %Y A294201 Maximum row values are A294202. %Y A294201 Unrelated to A002875. %Y A294201 Cf. A002872, A002873, A293181. %K A294201 nonn,tabf %O A294201 1,6 %A A294201 _Andrew Howroyd_, Oct 24 2017