This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294212 #33 Oct 29 2017 06:41:56 %S A294212 1,1,0,1,1,0,1,1,3,0,1,1,5,13,0,1,1,5,25,73,0,1,1,5,31,193,501,0,1,1, %T A294212 5,31,241,1601,4051,0,1,1,5,31,265,2261,16741,37633,0,1,1,5,31,265, %U A294212 2501,25501,190345,394353,0,1,1,5,31,265,2621,29461,319915,2509025 %N A294212 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} 1/(1-x^j) - 1). %H A294212 Seiichi Manyama, <a href="/A294212/b294212.txt">Antidiagonals n = 0..139, flattened</a> %F A294212 B(j,k) is the coefficient of Product_{i=1..k} 1/(1-x^i). %F A294212 A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0. %e A294212 Square array B(j,k) begins: %e A294212 1, 1, 1, 1, 1, ... %e A294212 0, 1, 1, 1, 1, ... %e A294212 0, 1, 2, 2, 2, ... %e A294212 0, 1, 2, 3, 3, ... %e A294212 0, 1, 3, 4, 5, ... %e A294212 0, 1, 3, 5, 6, ... %e A294212 Square array A(n,k) begins: %e A294212 1, 1, 1, 1, 1, ... %e A294212 0, 1, 1, 1, 1, ... %e A294212 0, 3, 5, 5, 5, ... %e A294212 0, 13, 25, 31, 31, ... %e A294212 0, 73, 193, 241, 265, ... %e A294212 0, 501, 1601, 2261, 2501, ... %Y A294212 Columns k=0..5 give A000007, A000262, A294213, A294214, A294215, A294216. %Y A294212 Rows n=0 gives A000012. %Y A294212 Main diagonal gives A058892. %Y A294212 Cf. A058398, A294250, A294254, A294289. %K A294212 nonn,tabl %O A294212 0,9 %A A294212 _Seiichi Manyama_, Oct 25 2017