A294225 Practical numbers q with q + 2 and q^2 + 2 both practical.
2, 4, 520, 2560, 3100, 4648, 6448, 6784, 7252, 11128, 12400, 15496, 19264, 26128, 26752, 26860, 28768, 31648, 32368, 36160, 37408, 41728, 45400, 48760, 53248, 53584, 54832, 57148, 58828, 63544, 66820, 68440, 68500, 73948, 74176, 80512, 81508, 84208, 93184, 94300, 106780, 112288, 113968, 118528, 131068
Offset: 1
Keywords
Examples
a(1) = 2 since 2, 2 + 2 = 4 and 2^2 + 2 = 6 are all practical. a(2) = 4 since 4, 4 + 2 = 6 and 4^2 + 2 = 18 are all practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2500
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017.
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n]; Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]); Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]; pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0); pq[n_]:=pq[n]=pr[n]&&pr[n+2]&&pr[n^2+2]; tab={};Do[If[pq[k],tab=Append[tab,k]],{k,1,132000}];Print[tab]
Comments