cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294225 Practical numbers q with q + 2 and q^2 + 2 both practical.

Original entry on oeis.org

2, 4, 520, 2560, 3100, 4648, 6448, 6784, 7252, 11128, 12400, 15496, 19264, 26128, 26752, 26860, 28768, 31648, 32368, 36160, 37408, 41728, 45400, 48760, 53248, 53584, 54832, 57148, 58828, 63544, 66820, 68440, 68500, 73948, 74176, 80512, 81508, 84208, 93184, 94300, 106780, 112288, 113968, 118528, 131068
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 25 2017

Keywords

Comments

Conjecture: The sequence has infinitely many terms.
In 1996 G. Melfi proved that there are infinitely many positive integers q with q and q + 2 both practical.
As any practical number greater than 2 is a multiple of 4 or 6, when q > 2, q + 2 and q^2 + 2 are all practical, we must have q^2 + 2 == 0 (mod 6), hence q is not divisible by 3 and thus 4 | q and 6 | (q + 2), therefore q == 4 (mod 12).

Examples

			a(1) = 2 since 2, 2 + 2 = 4 and 2^2 + 2 = 6 are all practical.
a(2) = 4 since 4, 4 + 2 = 6 and 4^2 + 2 = 18 are all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]);
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
    pq[n_]:=pq[n]=pr[n]&&pr[n+2]&&pr[n^2+2];
    tab={};Do[If[pq[k],tab=Append[tab,k]],{k,1,132000}];Print[tab]