This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294259 #32 Jan 08 2024 19:15:33 %S A294259 0,1,4,15,43,100,201,364,610,963,1450,2101,2949,4030,5383,7050,9076, %T A294259 11509,14400,17803,21775,26376,31669,37720,44598,52375,61126,70929, %U A294259 81865,94018,107475,122326,138664,156585,176188,197575,220851,246124,273505,303108,335050,369451 %N A294259 a(n) = n*(n^3 + 2*n^2 - 5*n + 10)/8. %C A294259 a(n) is even for n in A047481. %C A294259 Also, a(n) is divisible by 5 if and only if n belongs to A047218. %H A294259 Bruno Berselli, <a href="/A294259/b294259.txt">Table of n, a(n) for n = 0..1000</a> %H A294259 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A294259 O.g.f.: x*(1 - x + 5*x^2 - 2*x^3)/(1 - x)^5. %F A294259 E.g.f.: x*(8 + 8*x + 8*x^2 + x^3)*exp(x)/8. %F A294259 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. %F A294259 a(n) = 2*n + Sum_{i=0..n} i*(i^2 - 3)/2. %e A294259 After 0: %e A294259 1 = -(0) + (1); %e A294259 4 = -(0 + 1) + (2 + 2*3/2); %e A294259 15 = -(0 + 1 + 2) + (3 + 4 + 5 + 3*4/2); %e A294259 43 = -(0 + 1 + 2 + 3) + (4 + 5 + 6 + 7 + 8 + 9 + 4*5/2); %e A294259 100 = -(0 + 1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 14 + 5*6/2); %e A294259 201 = -(0 + 1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 20 + 6*7/2), etc. %p A294259 a := n -> n*(n*(n*(n+2)-5)+10)/8: seq(a(n),n=0..41); # _Peter Luschny_, Nov 06 2017 %t A294259 Table[n (n^3 + 2 n^2 - 5 n + 10)/8, {n, 0, 50}] %t A294259 LinearRecurrence[{5,-10,10,-5,1},{0,1,4,15,43},50] (* _Harvey P. Dale_, Jan 08 2024 *) %o A294259 (PARI) vector(50, n, n--; n*(n^3+2*n^2-5*n+10)/8) %o A294259 (Sage) [n*(n^3+2*n^2-5*n+10)/8 for n in range(50)] %o A294259 (Maxima) makelist(n*(n^3+2*n^2-5*n+10)/8, n, 0, 50); %o A294259 (Magma) [n*(n^3+2*n^2-5*n+10)/8: n in [0..50]]; %o A294259 (GAP) List([0..50], n -> n*(n^3+2*n^2-5*n+10)/8); %Y A294259 Cf. A000217, A002817, A176145. %Y A294259 Cf. A101374: the sums in the Example section end in squares. %Y A294259 Subsequence of A047207. %K A294259 nonn,easy %O A294259 0,3 %A A294259 _Bruno Berselli_, Oct 30 2017