A294280 a(n) = least positive k such that omega(n+k) > max(omega(n), omega(k)), where omega(m) = A001221(m), the number of distinct primes dividing m.
1, 4, 3, 2, 1, 24, 3, 2, 1, 20, 1, 18, 1, 16, 15, 2, 1, 12, 1, 10, 9, 8, 1, 6, 1, 4, 1, 2, 1, 180, 2, 1, 9, 8, 7, 6, 1, 4, 3, 2, 1, 168, 1, 16, 15, 14, 1, 12, 1, 10, 9, 8, 1, 6, 5, 4, 3, 2, 1, 150, 1, 4, 3, 1, 1, 144, 1, 2, 1, 140, 1, 6, 1, 4, 3, 2, 1, 132, 1
Offset: 1
Keywords
Examples
For n=2: - omega(2+1) = 1 = omega(2), - omega(2+2) = 1 = omega(2), - omega(2+3) = 1 = omega(2), - omega(2+4) = 2 > max(omega(2), omega(4)) = 1, - hence, a(2) = 4.
Links
- Rémy Sigrist, Logarithmic scatterplot of the first 10000 terms
- Rémy Sigrist, Pin plot of the first 10000 terms
- Rémy Sigrist, Ordinal transform of the first 10000 terms of n+a(n)
Programs
-
PARI
a(n) = my (on=omega(n)); for (k=1, oo, if (omega(n+k) > max(on, omega(k)), return (k)))
Comments