This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294281 #12 Oct 27 2017 07:43:50 %S A294281 1,1,2,4,9,22,59,172,547,1886,7047,28360,122675,567210,2796999, %T A294281 14641044,81191947,475148678,2929442263,18965690560,128754649699, %U A294281 914056305794,6777666961735,52367331911180,421188392986843,3519168714308702,30519733808467031 %N A294281 Number of ascent sequences of length n with alternating ascents and descents (unaffected by level steps). %H A294281 Alois P. Heinz, <a href="/A294281/b294281.txt">Table of n, a(n) for n = 0..550</a> %F A294281 a(n) = Sum_{j=0..n} binomial(n-1,j) * A099960(n-j). %e A294281 a(3) = 4: 000, 001, 010, 011. %e A294281 a(4) = 9: 0000, 0001, 0010, 0011, 0100, 0101, 0102, 0110, 0111. %e A294281 a(5) = 22: 00000, 00001, 00010, 00011, 00100, 00101, 00102, 00110, 00111, 01000, 01001, 01002, 01010, 01011, 01020, 01021, 01022, 01100, 01101, 01102, 01110, 01111. %p A294281 b:= proc(n, i, t, u) option remember; `if`(n<1, 1, add( %p A294281 b(n-1, j, t+`if`(j>i, 1, 0), `if`(i=j, u, 1-u)), %p A294281 j=`if`(u=0, i..t+1, 0..i))) %p A294281 end: %p A294281 a:= n-> b(n-1, 0$3): %p A294281 seq(a(n), n=0..30); %Y A294281 Cf. A022493, A099960. %K A294281 nonn %O A294281 0,3 %A A294281 _Alois P. Heinz_, Oct 26 2017