cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294307 Positive integers m with m^k - 1 (k = 1,...,13) all practical.

Original entry on oeis.org

169, 625, 729, 1089, 1681, 3969, 4225, 5929, 6241, 6561, 6889, 8647, 9409, 11449, 14641, 15625, 16129, 18769, 20449, 22201, 24649, 27561, 28561, 30625, 32761, 33331, 33489, 33661, 34969, 35209, 35721, 38071, 38809, 39601, 41209, 42025, 43681, 43969, 44521, 47089, 47961, 50625, 51529, 55225, 58081
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 27 2017

Keywords

Comments

Conjecture: For any positive integer n, there are infinitely many positive integers m with m^k - 1 (k = 1,...,n) all practical.
This is true for n = 2. In fact, by a result of Melfi, there are infinitely many positive integers m such that m - 1 and m + 1 are both practical and hence (m-1)*(m+1) = m^2 - 1 is also practical.

Examples

			a(1) = 169 since 169 is the first number m such that m - 1, m^2 - 1, ..., m^13 - 1 are all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]= FactorInteger[n];
    Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) ;
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
    pq[n_]:=pq[n]=pr[n-1]&&pr[n^2-1]&&pr[n^3-1]&&pr[n^4-1]&&pr[n^5-1]&&pr[n^6-1]&&pr[n^7-1]&&pr[n^8-1]&&pr[n^9-1]&&pr[n^(10)-1]&&pr[n^(11)-1]&&pr[n^(12)-1]&&pr[n^(13)-1]
    tab={};Do[If[pq[k],tab=Append[tab,k]],{k,1,59000}];Print[tab]