A294307 Positive integers m with m^k - 1 (k = 1,...,13) all practical.
169, 625, 729, 1089, 1681, 3969, 4225, 5929, 6241, 6561, 6889, 8647, 9409, 11449, 14641, 15625, 16129, 18769, 20449, 22201, 24649, 27561, 28561, 30625, 32761, 33331, 33489, 33661, 34969, 35209, 35721, 38071, 38809, 39601, 41209, 42025, 43681, 43969, 44521, 47089, 47961, 50625, 51529, 55225, 58081
Offset: 1
Keywords
Examples
a(1) = 169 since 169 is the first number m such that m - 1, m^2 - 1, ..., m^13 - 1 are all practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017.
Programs
-
Mathematica
f[n_]:=f[n]= FactorInteger[n]; Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) ; Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]; pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0); pq[n_]:=pq[n]=pr[n-1]&&pr[n^2-1]&&pr[n^3-1]&&pr[n^4-1]&&pr[n^5-1]&&pr[n^6-1]&&pr[n^7-1]&&pr[n^8-1]&&pr[n^9-1]&&pr[n^(10)-1]&&pr[n^(11)-1]&&pr[n^(12)-1]&&pr[n^(13)-1] tab={};Do[If[pq[k],tab=Append[tab,k]],{k,1,59000}];Print[tab]
Comments