This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294317 #51 Sep 14 2024 11:47:00 %S A294317 0,2,1,4,3,2,6,5,4,3,8,7,6,5,4,10,9,8,7,6,5,12,11,10,9,8,7,6,14,13,12, %T A294317 11,10,9,8,7,16,15,14,13,12,11,10,9,8,18,17,16,15,14,13,12,11,10,9,20, %U A294317 19,18,17,16,15,14,13,12,11,10 %N A294317 Triangle read by rows: T(n, k) = 2*n-k, k <= n. %H A294317 Muniru A Asiru, <a href="/A294317/b294317.txt">Table of n, a(n) for n = 0..100000</a> %H A294317 Thomas H. Sidebotham, <a href="https://books.google.com/books?id=VsAZa5PWLz8C&pg=PA181">The A to Z of Mathematics: A Basic Guide</a>, John Wiley & Sons, p. 181, (2003) ISBN 9780471461630. %F A294317 T(n, k) = 2*n - k, 0 <= k <= n. %F A294317 T(n, 2*m) = A005843(n), n >= m >= 0 (even-indexed columns). %F A294317 T(n, 2*m+1) = A005408(n), n >= m >= 0 (odd-indexed columns). %F A294317 T(n, n-m) = A001477(n+m), n >= m >= 0 (diagonals m >= 0). %F A294317 2*A287326(n, k) = A287326(T(n, k),k) + A287326(T(n, k),0). %F A294317 G.f.: x*(2 + y - 3*x*y)/((1 - x)^2*(1 - x*y)^2). - _Stefano Spezia_, Sep 14 2024 %e A294317 Triangle begins: %e A294317 0; %e A294317 2, 1; %e A294317 4, 3, 2; %e A294317 6, 5, 4, 3; %e A294317 8, 7, 6, 5, 4; %e A294317 10, 9, 8, 7, 6, 5; %e A294317 12, 11, 10, 9, 8, 7, 6; %e A294317 14, 13, 12, 11, 10, 9, 8, 7; %e A294317 16, 15, 14, 13, 12, 11, 10, 9, 8; %e A294317 18, 17, 16, 15, 14, 13, 12, 11, 10, 9; %e A294317 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10; %e A294317 ... %t A294317 Column[Table[2*n-k, {n, 0, 10}, {k, 0, n}], Center] %o A294317 (Python) %o A294317 def f(x): %o A294317 a=[] %o A294317 for k in range(x): %o A294317 for m in range (k+1): %o A294317 a.append(2*k-m) %o A294317 return a %o A294317 print(f(10)) %o A294317 (GAP) A294317 := Flat(List([0..149],n->List([0..n],k->2*n-k))); # _Muniru A Asiru_, Dec 29 2017 %Y A294317 Cf. A001477, A005408, A005843, A287326. %K A294317 nonn,tabl,easy %O A294317 0,2 %A A294317 _Kolosov Petro_, Oct 28 2017 %E A294317 Edited by _Wolfdieter Lang_, Dec 08 2017