This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294335 #10 Oct 30 2017 03:54:36 %S A294335 1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,64,1,1,2,1,1,1,1, %T A294335 345,1,1,1,1,1,1,1,1824,1,1,1,1,1,1,1,9661,1,1,1,1,1,30,1,51284,1,1,1, %U A294335 1,1,1,1,272334,1,1,1,1,1,1,1,1445995,1,1,1,1,1,1,1,7677250,463,1,1,1,1 %N A294335 Number of compositions (ordered partitions) of n into cubes dividing n. %H A294335 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A294335 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %F A294335 a(m)=1 when m is cubefree (A004709) and a(m)<>1 when m is not cubefree (A046099). - _Michel Marcus_, Oct 29 2017 %e A294335 a(16) = 11 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 are cubes {1, 8} therefore we have [8, 8], [8, 1, 1, 1, 1, 1, 1, 1, 1], [1, 8, 1, 1, 1, 1, 1, 1, 1], [1, 1, 8, 1, 1, 1, 1, 1, 1], [1, 1, 1, 8, 1, 1, 1, 1, 1], [1, 1, 1, 1, 8, 1, 1, 1, 1], [1, 1, 1, 1, 1, 8, 1, 1, 1], [1, 1, 1, 1, 1, 1, 8, 1, 1], [1, 1, 1, 1, 1, 1, 1, 8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 8] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %t A294335 Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0 && IntegerQ[k^(1/3)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 85}] %Y A294335 Cf. A023358, A100346, A294105, A294333. %Y A294335 Cf. A004709, A046099. %K A294335 nonn %O A294335 0,9 %A A294335 _Ilya Gutkovskiy_, Oct 28 2017