This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294338 #10 Nov 27 2017 12:07:37 %S A294338 1,1,1,2,1,1,1,2,2,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1, %T A294338 1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,1,1,1, %U A294338 1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1 %N A294338 Number of ways to write n as a finite power-tower of positive integers greater than one, allowing both left and right nesting of parentheses. %H A294338 R. J. Mathar, <a href="/A294338/b294338.txt">Table of n, a(n) for n = 1..10000</a> %e A294338 The a(16) = 5 ways are: 16, 4^2, (2^2)^2, 2^4, 2^(2^2). %p A294338 A294338 := proc(n) %p A294338 local expo,g,a,d ; %p A294338 if n =1 then %p A294338 return 1; %p A294338 end if; %p A294338 # compute gcd of the set of prime power exponents (A052409) %p A294338 ifactors(n)[2] ; %p A294338 [ seq(op(2,ep),ep=%)] ; %p A294338 igcd(op(%)) ; %p A294338 # set of divisors of A052409 (without the 1) %p A294338 g := numtheory[divisors](%) minus {1} ; %p A294338 a := 0 ; %p A294338 for d in g do %p A294338 # recursive (sort of convolution) call %p A294338 a := a+ procname(d)*procname(root[d](n)) ; %p A294338 end do: %p A294338 1+a ; %p A294338 end proc: %p A294338 seq(A294338(n),n=1..120) ; # _R. J. Mathar_, Nov 27 2017 %t A294338 a[n_]:=1+Sum[a[n^(1/g)]*a[g],{g,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]; %t A294338 Array[a,100] %Y A294338 Cf. A001597, A007916, A052409, A052410, A089723, A164336, A277562, A284639, A288636, A294336, A294337, A294339. %K A294338 nonn %O A294338 1,4 %A A294338 _Gus Wiseman_, Oct 28 2017