cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294347 a(n) is the smallest number whose deficiency or abundance is equal to n, or a(n) = 0 if such a number does not exist.

This page as a plain text file.
%I A294347 #60 Nov 01 2017 16:09:27
%S A294347 6,1,3,18,5,9,7,50,22
%N A294347 a(n) is the smallest number whose deficiency or abundance is equal to n, or a(n) = 0 if such a number does not exist.
%C A294347 If nonzero, a(9) > 10^9. - _Michel Marcus_, Oct 29 2017
%C A294347 From _Robert Israel_, Oct 29 2017: (Start)
%C A294347 If n is odd, then a(n) must be a square or twice a square (A028982).
%C A294347 If nonzero, a(9) > 10^13.
%C A294347 Some other values: a(11)=244036, a(17)=100, a(19)=25, a(25)=98, a(31)=15376, a(37)=484, a(39)=162, a(41)=49, a(47)=225, a(51)=72. (End)
%C A294347 a(n) > 10^20 for n in (9, 13, 15, 21, 23, 27, 29, 33, 35, 43, 45); see the intersection of A234285 and A234286. - _Michel Marcus_, Oct 30 2017
%C A294347 For the intersection mentioned above see A294406. - _Omar E. Pol_, Nov 01 2017
%H A294347 Nichole Davis, Dominic Klyve and Nicole Kraght, <a href="http://dx.doi.org/10.2140/involve.2013.6.493">On the difference between an integer and the sum of its proper divisors</a>, Involve, Vol. 6 (2013), No. 4, 493-504; DOI: 10.2140/involve.2013.6.493.
%H A294347 Raven Dean, Rick Erdman, Dominic Klyve, Emily Lycette, Melissa Pidde, and Derek Wheel, <a href="https://projecteuclid.org/euclid.mjms/1449161366">Families of Values of the Excedent Function sigma(n)-2n</a>, Missouri J. Math. Sci., Volume 27, Issue 1 (2015), 37-46.
%t A294347 Table[k = 1; While[Abs[2 k - DivisorSigma[1, k]] != n, k++]; k, {n, 0, 8}] (* _Michael De Vlieger_, Oct 30 2017 *)
%o A294347 (PARI) a(n) = {my(k=1); while (abs(2*k-sigma(k)) != n, k++); k;} \\ _Michel Marcus_, Oct 29 2017
%Y A294347 Cf. A000203, A000396, A005100, A005101, A028982, A033879, A033880, A234285, A234286, A294386, A294393, A294406.
%K A294347 nonn,more,hard
%O A294347 0,1
%A A294347 _Omar E. Pol_, Oct 29 2017