A294365 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 10, 21, 41, 74, 129, 219, 367, 607, 997, 1629, 2653, 4311, 6995, 11339, 18369, 29745, 48154, 77941, 126139, 204126, 330313, 534489, 864854, 1399397, 2264307, 3663762, 5928129, 9591953, 15520146, 25112165, 40632379, 65744614, 106377065, 172121753
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) + 2 = 10; Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294365 *) Table[b[n], {n, 0, 10}]
Comments