A294367 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 9, 19, 37, 67, 117, 200, 335, 555, 912, 1491, 2429, 3948, 6407, 10387, 16829, 27253, 44121, 71415, 115579, 187039, 302665, 489753, 792469, 1282275, 2074799, 3357131, 5431989, 8789181, 14221233, 23010479, 37231779, 60242328, 97474179, 157716581
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) + 1 = 12; Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n - 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294367 *) Table[b[n], {n, 0, 10}]
Comments