This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294384 #11 Nov 06 2018 04:16:45 %S A294384 1,3,4,13,61,361,2521,20161,181441,1814401,19958401,239500801, %T A294384 3353011202,50295168017 %N A294384 Solution of the complementary equation a(n) = a(n-1)*b(n-2) - n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294384 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294381 for a guide to related sequences. %H A294384 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.pdf">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294384 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294384 a(2) = a(1)*b(0) - 2 = 4 %e A294384 Complement: (b(n)) = (2, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, ...) %t A294384 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294384 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294384 a[n_] := a[n] = a[n - 1]*b[n - 2] - n; %t A294384 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294384 Table[a[n], {n, 0, 40}] (* A294384 *) %t A294384 Table[b[n], {n, 0, 10}] %Y A294384 Cf. A293076, A293765, A294381. %K A294384 nonn,more %O A294384 0,2 %A A294384 _Clark Kimberling_, Oct 29 2017