cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294392 E.g.f.: exp(Sum_{n>=1} A001227(n) * x^n).

This page as a plain text file.
%I A294392 #19 Sep 07 2018 04:39:00
%S A294392 1,1,3,19,97,801,7411,73123,821409,10977697,151612291,2286137811,
%T A294392 38308830913,669163118209,12649211055027,257559356068771,
%U A294392 5432325991339201,121949878889492673,2907330680764076419,71860237654425159187,1871308081194213959841
%N A294392 E.g.f.: exp(Sum_{n>=1} A001227(n) * x^n).
%H A294392 Seiichi Manyama, <a href="/A294392/b294392.txt">Table of n, a(n) for n = 0..441</a>
%F A294392 a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A001227(k)*a(n-k)/(n-k)! for n > 0.
%F A294392 E.g.f.: Product_{k>=1} exp(x^(2*k-1)/(1 - x^(2*k-1))). - _Ilya Gutkovskiy_, Nov 27 2017
%F A294392 Conjecture: log(a(n)/n!) ~ sqrt(n*log(n)). - _Vaclav Kotesovec_, Sep 07 2018
%t A294392 a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSum[k, Mod[#, 2] &]*a[n - k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* _Vaclav Kotesovec_, Sep 07 2018 *)
%o A294392 (PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, d%2)*x^k))))
%Y A294392 E.g.f.: exp(Sum_{n>=1} (Sum_{d|n and d is odd} d^k) * x^n): this sequence (k=0), A294394 (k=1), A294395 (k=2).
%Y A294392 Cf. A001227, A206303.
%K A294392 nonn
%O A294392 0,3
%A A294392 _Seiichi Manyama_, Oct 30 2017