This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294397 #16 Nov 01 2017 23:05:40 %S A294397 1,3,6,11,17,25,34,44,55,68,82,97,113,130,149,169,190,212,235,259,284, %T A294397 311,339,368,398,429,461,494,528,564,601,639,678,718,759,801,844,888, %U A294397 934,981,1029,1078,1128,1179,1231,1284,1338,1393,1450,1508,1567,1627 %N A294397 Solution of the complementary equation a(n) = a(n-1) + b(n-2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294397 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A022940 for a guide to related sequences. %C A294397 Apart from the first two entries this is the same as A081689. - _R. J. Mathar_, Oct 31 2017 %H A294397 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294397 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294397 a(2) = a(1) + b(0) + 1 = 6 %e A294397 Complement: (b(n)) = (2, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, ...) %t A294397 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294397 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294397 a[n_] := a[n] = a[n - 1] + b[n - 2] + 1; %t A294397 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294397 Table[a[n], {n, 0, 40}] (* A294397 *) %t A294397 Table[b[n], {n, 0, 10}] %Y A294397 Cf. A081689, A293076, A293765, A022940. %K A294397 nonn,easy %O A294397 0,2 %A A294397 _Clark Kimberling_, Oct 30 2017