This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294399 #9 Nov 01 2017 23:05:55 %S A294399 1,3,8,15,23,32,42,54,67,81,96,112,129,148,168,189,211,234,258,283, %T A294399 310,338,367,397,428,460,493,527,563,600,638,677,717,758,800,843,887, %U A294399 933,980,1028,1077,1127,1178,1230,1283,1337,1392,1448,1506,1565,1625,1686 %N A294399 Solution of the complementary equation a(n) = a(n-1) + b(n-2) + 3, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294399 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A022940 for a guide to related sequences. %H A294399 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.pdf">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294399 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294399 a(2) = a(1) + b(0) + 3 = 8 %e A294399 Complement: (b(n)) = (2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, ...) %t A294399 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294399 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294399 a[n_] := a[n] = a[n - 1] + b[n - 2] + 3; %t A294399 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294399 Table[a[n], {n, 0, 40}] (* A294399 *) %t A294399 Table[b[n], {n, 0, 10}] %Y A294399 Cf. A293076, A293765, A022940. %K A294399 nonn,easy %O A294399 0,2 %A A294399 _Clark Kimberling_, Oct 30 2017