cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294408 Expansion of 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^(2*j))).

This page as a plain text file.
%I A294408 #5 Feb 16 2025 08:33:51
%S A294408 1,-1,1,0,-2,3,-2,-1,6,-10,8,2,-19,34,-30,-3,60,-112,106,-2,-188,370,
%T A294408 -373,48,586,-1226,1307,-296,-1808,4046,-4546,1430,5516,-13300,15724,
%U A294408 -6217,-16626,43566,-54132,25464,49373,-142146,185496,-100306,-143896,461874,-632864,384348,409270,-1494356,2150240
%N A294408 Expansion of 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^(2*j))).
%C A294408 Convolution inverse of the 3rd order mock theta function phi(q) (A053250).
%H A294408 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function</a>
%F A294408 G.f.: 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^(2*j))).
%t A294408 nmax = 50; CoefficientList[Series[1/(1 + Sum[q^(i^2)/Product[1 + q^(2 j), {j, 1, i}], {i, 1, nmax}]), {q, 0, nmax}], q]
%Y A294408 Cf. A053250, A081360, A294407.
%K A294408 sign
%O A294408 0,5
%A A294408 _Ilya Gutkovskiy_, Oct 30 2017