cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294411 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. -exp(k*x)*LambertW(-x).

This page as a plain text file.
%I A294411 #10 Nov 09 2017 21:18:42
%S A294411 0,0,1,0,1,2,0,1,4,9,0,1,6,18,64,0,1,8,33,116,625,0,1,10,54,216,1060,
%T A294411 7776,0,1,12,81,388,1865,12702,117649,0,1,14,114,656,3340,21228,
%U A294411 187810,2097152,0,1,16,153,1044,5905,36414,303765,3296120,43046721,0,1,18,198,1576,10100,63480,500374,5222864,66897288,1000000000
%N A294411 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. -exp(k*x)*LambertW(-x).
%H A294411 G. C. Greubel, <a href="/A294411/b294411.txt">Table of n, a(n) for the first 50 antidiagonals, flattened</a>
%F A294411 E.g.f. of column k: -exp(k*x)*LambertW(-x).
%e A294411 E.g.f. of column k: A_k(x) = x/1! + 2*(k + 1)*x^2/2! + 3*(k^2 + 2*k + 3)*x^3/3! + 4*(k^3 + 3*k^2 + 9*k + 16)*x^4/4! + ...
%e A294411 Square array begins:
%e A294411     0,     0,     0,     0,     0,      0, ...
%e A294411     1,     1,     1,     1,     1,      1, ...
%e A294411     2,     4,     6,     8,    10,     12, ...
%e A294411     9,    18,    33,    54,    81,    114, ...
%e A294411    64,   116,   216,   388,   656,   1044, ...
%e A294411   625,  1060,  1895,  3340,  5905,  10100, ...
%t A294411 Table[Function[k, n! SeriesCoefficient[-Exp[k x] LambertW[-x], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
%Y A294411 Columns k=0..2 give A000169, A277473, A277485.
%Y A294411 Main diagonal gives A292633.
%Y A294411 Cf. A290824.
%K A294411 nonn,tabl
%O A294411 0,6
%A A294411 _Ilya Gutkovskiy_, Oct 30 2017