This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294413 #9 Nov 01 2017 20:53:46 %S A294413 1,3,6,10,15,23,35,53,82,128,202,320,511,819,1317,2122,3424,5530,8936, %T A294413 14447,23363,37789,61130,98896,160002,258873,418849,677695,1096516, %U A294413 1774181,2870666,4644815,7515448,12160229,19675642,31835835 %N A294413 Solution of the complementary equation a(n) = a(n-1) + a(n-2) - b(n-1) + 6, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294413 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences. %C A294413 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. %H A294413 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294413 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294413 a(2) = a(1) + a(0) - b(1) + 6 %e A294413 Complement: (b(n)) = (2, 4, 6, 7, 9, 11, 12, 13, 14, 16, ...) %t A294413 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294413 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294413 a[n_] := a[n] = a[n - 1] + a[n - 2] - b[n - 1] + 6; %t A294413 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294413 Table[a[n], {n, 0, 40}] (* A294413 *) %t A294413 Table[b[n], {n, 0, 10}] %Y A294413 Cf. A293076, A293765, A294414. %K A294413 nonn,easy %O A294413 0,2 %A A294413 _Clark Kimberling_, Oct 31 2017