A294417 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 8, 17, 32, 57, 99, 168, 280, 462, 757, 1235, 2009, 3262, 5291, 8575, 13889, 22488, 36402, 58916, 95345, 154289, 249663, 403982, 653676, 1057690, 1711399, 2769123, 4480558, 7249719, 11730316, 18980075, 30710432, 49690549, 80401024, 130091617
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) + b(0) - 2 = 8 Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 13, 14,...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294417 *) Table[b[n], {n, 0, 10}]
Comments