A294418 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 12, 28, 56, 103, 181, 309, 518, 858, 1411, 2309, 3763, 6118, 9930, 16100, 26085, 42243, 68389, 110696, 179152, 289918, 469143, 759137, 1228359, 1987579, 3216026, 5203696, 8419816, 13623609, 22043525, 35667237, 57710868, 93378214, 151089194, 244467523
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) + 2*b(0) = 12 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14,...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2 b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294418 *) Table[b[n], {n, 0, 10}]
Comments