A294419 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 16, 37, 75, 138, 243, 415, 696, 1153, 1895, 3098, 5047, 8203, 13314, 21587, 34975, 56640, 91697, 148423, 240210, 388727, 629035, 1017864, 1647005, 2664979, 4312098, 6977195, 11289415, 18266736, 29556281, 47823151, 77379570, 125202863, 202582581
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + 2*b(1) + 2*b(0) = 16 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + 2 b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294419 *) Table[b[n], {n, 0, 10}]
Comments