This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294421 #9 Nov 01 2017 20:54:38 %S A294421 1,3,10,19,36,63,108,181,302,496,812,1323,2151,3491,5660,9170,14852, %T A294421 24044,38919,62987,101931,164944,266902,431874,698805,1130709,1829545, %U A294421 2960286,4789864,7750184,12540083,20290303,32830425,53120767,85951232,139072040 %N A294421 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294421 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences. %C A294421 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. %H A294421 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294421 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294421 a(2) = a(1) + a(0) + 2*b(1) - b(0) = 10 %e A294421 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, ...) %t A294421 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294421 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294421 a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] - b[n - 2]; %t A294421 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294421 Table[a[n], {n, 0, 40}] (* A294421 *) %t A294421 Table[b[n], {n, 0, 10}] %Y A294421 Cf. A293076, A293765, A294414. %K A294421 nonn,easy %O A294421 0,2 %A A294421 _Clark Kimberling_, Oct 31 2017