A294422 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 7, 12, 21, 36, 59, 97, 158, 258, 418, 678, 1098, 1778, 2878, 4658, 7538, 12199, 19739, 31940, 51681, 83623, 135306, 218931, 354239, 573172, 927413, 1500587, 2428002, 3928591, 6356595, 10285189, 16641786, 26926977, 43568765, 70495744
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) - b(0) + 1 = 7 Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 11, 13, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294422 *) Table[b[n], {n, 0, 10}]
Comments