This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294425 #5 Nov 01 2017 12:26:39 %S A294425 1,3,9,17,32,56,96,163,270,445,728,1187,1930,3133,5082,8234,13336, %T A294425 21591,34949,56563,91536,148124,239686,387837,627551,1015417,1642998, %U A294425 2658446,4301478,6959958,11261471,18221465,29482973,47704476,77187488,124892004,202079533 %N A294425 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294425 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences. %C A294425 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. %H A294425 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294425 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294425 a(2) = a(1) + a(0) + 2*b(1) - b(0) - 1 = 9 %e A294425 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14,...) %t A294425 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294425 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294425 a[n_] := a[n] = a[n - 1] + a[n - 2] + 2*b[n - 1] - b[n - 2] - 1; %t A294425 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294425 Table[a[n], {n, 0, 40}] (* A294425 *) %t A294425 Table[b[n], {n, 0, 10}] %Y A294425 Cf. A293076, A293765, A294414. %K A294425 nonn,easy %O A294425 0,2 %A A294425 _Clark Kimberling_, Nov 01 2017