cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294435 a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^4.

This page as a plain text file.
%I A294435 #29 Jun 07 2019 11:32:35
%S A294435 1,17,338,6754,131428,2495906,46434532,849488292,15328171208,
%T A294435 273445276258,4831735919236,84688295720132,1474133269832776,
%U A294435 25506505928857892,439034457665156168,7522356118216054216,128364598453699389840,2182553210810903666402,36989251585608710893636
%N A294435 a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^4.
%H A294435 Seiichi Manyama, <a href="/A294435/b294435.txt">Table of n, a(n) for n = 0..300</a>
%H A294435 N. J. Calkin, <a href="http://dx.doi.org/10.1016/0012-365X(94)90394-8">A curious binomial identity</a>, Discr. Math., 131 (1994), 335-337.
%H A294435 M. Hirschhorn, <a href="http://dx.doi.org/10.1016/0012-365X(95)00086-C">Calkin's binomial identity</a>, Discr. Math., 159 (1996), 273-278.
%F A294435 a(n) ~ n * 2^(4*n - 1). - _Vaclav Kotesovec_, Jun 07 2019
%p A294435 A:=proc(n,k) local j; add(binomial(n,j),j=0..k); end;
%p A294435 S:=proc(n,p) local i; global A; add(A(n,i)^p, i=0..n); end;
%p A294435 [seq(S(n,4),n=0..30)];
%t A294435 Table[Sum[Sum[Binomial[n,k], {k,0,m}]^4, {m,0,n}], {n,0,15}] (* _Vaclav Kotesovec_, Jun 07 2019 *)
%o A294435 (PARI) a(n) = sum(m=0, n, sum(k=0, m, binomial(n,k))^4); \\ _Michel Marcus_, Nov 18 2017
%Y A294435 Same expression with exponent b instead of 4: A001792 (b=1), A003583 (b=2), A007403 (b=3), A294435 (b=4), A294436 (b=5).
%K A294435 nonn
%O A294435 0,2
%A A294435 _N. J. A. Sloane_, Nov 17 2017