This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294444 #13 Dec 06 2024 11:11:07 %S A294444 1,1,1,2,3,6,10,16,29,51,83,148,246,402,650,1084,1740,2803,4458 %N A294444 Number of distinct numbers appearing as denominators in row n of Kepler's triangle A294442. %C A294444 It would be nice to have a formula or recurrence. %e A294444 Row 4 of A294442 contains eight fractions, 1/5, 4/5, 3/7, 4/7, 2/7, 2/7, 3/8, 5/8. %e A294444 There are three distinct denominators, so a(4) = 3. %p A294444 # S[n] is the list of fractions, written as pairs [i, j], in row n of Kepler's triangle; nc is the number of distinct numerators, and dc the number of distinct denominators %p A294444 S[0]:=[[1,1]]; S[1]:=[[1,2]]; %p A294444 nc:=[1,1]; dc:=[1,1]; %p A294444 for n from 2 to 18 do %p A294444 S[n]:=[]; %p A294444 for k from 1 to nops(S[n-1]) do %p A294444 t1:=S[n-1][k]; %p A294444 a:=[t1[1],t1[1]+t1[2]]; %p A294444 b:=[t1[2],t1[1]+t1[2]]; %p A294444 S[n]:=[op(S[n]),a,b]; %p A294444 od: %p A294444 listn:={}; %p A294444 for k from 1 to nops(S[n]) do listn:={op(listn), S[n][k][1]}; od: %p A294444 c:=nops(listn); nc:=[op(nc),c]; %p A294444 listd:={}; %p A294444 for k from 1 to nops(S[n]) do listd:={op(listd), S[n][k][2]}; od: %p A294444 c:=nops(listd); dc:=[op(dc),c]; %p A294444 od: %p A294444 nc; # A293160 %p A294444 dc; # this sequence %Y A294444 Cf. A294442. %Y A294444 See A293160 for the number of distinct numerators, or for numerators or denominators in the Stern-Brocot triangle A002487. %K A294444 nonn,more %O A294444 0,4 %A A294444 _N. J. A. Sloane_, Nov 20 2017