cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294442 Kepler's tree of fractions, read across rows (the fraction i/j is represented as the pair i,j).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 4, 2, 5, 3, 5, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 6, 5, 6, 4, 9, 5, 9, 3, 10, 7, 10, 4, 11, 7, 11, 2, 9, 7, 9, 5, 12, 7, 12, 3, 11, 8, 11, 5, 13, 8, 13, 1, 7, 6, 7, 5, 11, 6, 11, 4, 13, 9, 13, 5, 14, 9, 14, 3, 13, 10, 13, 7, 17, 10, 17, 4, 15, 11, 15, 7, 18, 11
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2017

Keywords

Comments

The first row contains the single fraction 1/1,
the second row contains the single fraction 1/2,
and thereafter below each fraction i/j we write two fractions i/(i+j), j/(i+j).
If we just look at the numerators we recover the same sequence, and if we just look at the denominators we get A086593 with the terms (after the first) repeated.
Sequence A020651 is almost the same as this, except that it lacks one of the initial 1's, and the definition focuses on single numbers rather than pairs of numbers or fractions. For that reason it seems to be best to have a separate entry (this sequence) for the actual tree.

Examples

			The tree begins as follows:
..............1/1
...............|
..............1/2
.........../.......\
......1/3.............2/3
...../....\........../...\
..1/4.....3/4.....2/5.....3/5
../..\..../..\..../..\..../..\
1/5.4/5.3/7.4/7.2/7.5/7.3/8.5/8
		

Crossrefs

A different version of the Kepler tree is described in A093873.
See A294446 for the tree of Farey fractions.

Programs

  • Maple
    # S[n] is the list of fractions, written as pairs [i,j], in row n of Kepler's triangle
    S[0]:=[[1,1]]; S[1]:=[[1,2]];
    for n from 2 to 10 do
    S[n]:=[];
    for k from 1 to nops(S[n-1]) do
    t1:=S[n-1][k];
    a:=[t1[1],t1[1]+t1[2]];
    b:=[t1[2],t1[1]+t1[2]];
    S[n]:=[op(S[n]),a,b];
    od:
    lprint(S[n]);
    od:
  • Mathematica
    Map[{Numerator@ #, Denominator@ #} &, #] &@ Flatten@ Nest[Append[#, Flatten@ Map[{#1/(#1 + #2), #2/(#1 + #2)} & @@ {Numerator@ #, Denominator@ #} &, Last@ #]] &, {{1/1}, {1/2}}, 5] // Flatten (* Michael De Vlieger, Apr 18 2018 *)

A295515 The Euclid tree, read across levels.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 1, 1, 4, 4, 3, 3, 5, 5, 2, 2, 5, 5, 3, 3, 4, 4, 1, 1, 5, 5, 4, 4, 7, 7, 3, 3, 8, 8, 5, 5, 7, 7, 2, 2, 7, 7, 5, 5, 8, 8, 3, 3, 7, 7, 4, 4, 5, 5, 1, 1, 6, 6, 5, 5, 9, 9, 4, 4, 11, 11, 7, 7, 10, 10, 3, 3, 11, 11, 8, 8
Offset: 1

Views

Author

Peter Luschny, Nov 25 2017

Keywords

Comments

Set N(x) = 1 + floor(x) - frac(x) and let '"' denote the ditto operator, referring to the previously computed expression. Assume the first expression is '0'. Then [0, repeat(N("))] will generate the natural numbers 0, 1, 2, 3, ... and [0, repeat(1/N("))] will generate the rational numbers 0/1, 1/1, 1/2, 2/1, 1/3, 3/2, ... Every reduced nonnegative rational number r appears exactly once in this list as a relatively prime pair [n, d] = r = n/d. We list numerator and denominator one after the other in the sequence.
The apt name 'Euclid tree' is taken from the exposition of Malter, Schleicher and Don Zagier. It is sometimes called the Calkin-Wilf tree. The enumeration is based on Stern's diatomic series (which is a subsequence) and computed by a modification of Dijkstra's 'fusc' function.
The tree listed has root 0, the variant with root 1 is more widely used. Seen as sequences the difference between the two trees is trivial: it is enough to leave out the first two terms; but as trees they are markedly different (see the example section).

Examples

			The tree with root 0 starts:
                                      [0/1]
                  [1/1,                                    1/2]
        [2/1,                1/3,                3/2,                2/3]
   [3/1,      1/4,      4/3,      3/5,      5/2,      2/5,      5/3,      3/4]
[4/1, 1/5, 5/4, 4/7, 7/3, 3/8, 8/5, 5/7, 7/2, 2/7, 7/5, 5/8, 8/3, 3/7, 7/4, 4/5]
.
The tree with root 1 starts:
                                      [1/1]
                  [1/2,                                    2/1]
        [1/3,                3/2,                2/3,                3/1]
   [1/4,      4/3,      3/5,      5/2,      2/5,      5/3,      3/4,      4/1]
[1/5, 5/4, 4/7, 7/3, 3/8, 8/5, 5/7, 7/2, 2/7, 7/5, 5/8, 8/3, 3/7, 7/4, 4/5, 5/1]
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 3rd ed., 2004.

Crossrefs

Cf. A002487, A174981, A294446 (Stern-Brocot tree), A294442 (Kepler's tree), A295511 (Schinzel-Sierpiński tree), A295512 (encoded by semiprimes).

Programs

  • Maple
    # First implementation: use it only if you are not afraid of infinite loops.
    a := x -> 1/(1+floor(x)-frac(x)): 0; do a(%) od;
    # Second implementation:
    lusc := proc(m) local a, b, n; a := 0; b := 1; n := m; while n > 0 do
    if n mod 2 = 1 then b := a + b else a := a + b fi; n := iquo(n, 2) od; a end:
    R := n -> 3*2^(n-1)-1 .. 2^n: # The range of level n.
    EuclidTree_rat := n -> [seq(lusc(k+1)/lusc(k), k=R(n), -1)]:
    EuclidTree_num := n -> [seq(lusc(k+1), k=R(n), -1)]:
    EuclidTree_den := n -> [seq(lusc(k), k=R(n), -1)]:
    EuclidTree_pair := n -> ListTools:-Flatten([seq([lusc(k+1), lusc(k)], k=R(n), -1)]):
    seq(print(EuclidTree_pair(n)), n=1..5);
  • Sage
    def A295515(n):
        if n == 1: return 0
        M = [0, 1]
        for b in (n//2 - 1).bits():
            M[b] = M[0] + M[1]
        return M[1]
    print([A295515(n) for n in (1..85)])

Formula

Some characteristics in comparison to the tree with root 1, seen as a table with T(n,k) for n >= 1 and 1 <= k <= 2^(n-1). Here Tr(n,k), Tp(n,k), Tq(n,k) denotes the fraction r, the numerator of r and the denominator of r in row n and column k respectively.
With root 0: With root 1:
Root Tr(1,1) 0/1 1/1
Tp(n,1) 0,1,2,3,... 1,1,1,1,...
Tp(n,2^(n-1)) 0,1,2,3,... 1,2,3,4,...
Tq(n,1) 1,1,1,1,... 1,2,3,4,...
Tq(n,2^(n-1)) 1,2,3,4,... 1,1,1,1,...
Sum_k Tp(n,k) 0,2,8,26,... A024023 1,3,9,27,... A000244
Sum_k Tq(n,k) 1,3,9,27,... A000244 1,3,9,27,... A000244
Sum_k 2Tr(n,k) 0,3,9,21,... A068156 2,5,11,23,... A083329
Sum_k Tp(n,k)Tq(n,k) 0,3,17,81,... A052913-1 1,4,18,82,... A052913
----
a(n) = A002487(floor(n/2)). - Georg Fischer, Nov 29 2022
Showing 1-2 of 2 results.