This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294467 #13 Sep 08 2022 08:46:20 %S A294467 1,2,5,22,113,746,6037,55070,548417,6281938,79935941,1087584422, %T A294467 16109401585,255667890362,4358283982613,79893373511086, %U A294467 1542859916102657,31322024816838050,676027617881188357,15287136167625123638,362322855217463741681 %N A294467 Binomial transform of A088311. %H A294467 G. C. Greubel, <a href="/A294467/b294467.txt">Table of n, a(n) for n = 0..443</a> %F A294467 a(n) ~ exp(1) * n! * A000009(n). %F A294467 a(n) ~ sqrt(2*Pi) * exp(Pi*sqrt(n/3) - n + 1) * n^(n - 1/4) / (4*3^(1/4)). %F A294467 E.g.f.: exp(x) * Product_{k>=1} (1 + x^k). - _Ilya Gutkovskiy_, Oct 15 2018 %t A294467 Table[Sum[Binomial[n, k]*k!*PartitionsQ[k], {k, 0, n}], {n, 0, 20}] %o A294467 (PARI) x='x+O('x^30); Vec(serlaplace(exp(x)*eta(x^2)/eta(x))) \\ _G. C. Greubel_, Oct 15 2018 %o A294467 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)*(&*[1 + x^k: k in [1..50]]))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Oct 15 2018 %Y A294467 Cf. A266232, A294467, A294468. %Y A294467 Cf. A218481, A294466, A281425, A095051. %K A294467 nonn %O A294467 0,2 %A A294467 _Vaclav Kotesovec_, Oct 31 2017