cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294469 E.g.f.: 1/Product_{k>0} (1 - x^k/k)^k.

This page as a plain text file.
%I A294469 #20 Sep 13 2018 03:04:34
%S A294469 1,1,4,18,114,810,7140,68880,766920,9304680,125086080,1814015280,
%T A294469 28588356720,481128888240,8678237087520,166041500264640,
%U A294469 3371031116893440,72153115744469760,1627441316510929920,38500269726897538560,954533425718494702080
%N A294469 E.g.f.: 1/Product_{k>0} (1 - x^k/k)^k.
%H A294469 Seiichi Manyama, <a href="/A294469/b294469.txt">Table of n, a(n) for n = 0..443</a>
%F A294469 E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*j^(k-1))). - _Ilya Gutkovskiy_, Sep 12 2018
%t A294469 nmax = 20; CoefficientList[Series[Product[1/(1-x^k/k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Nov 01 2017 *)
%o A294469 (PARI) N=66; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-x^k/k)^k)))
%Y A294469 Cf. A007841, A181541, A294470, A294471.
%K A294469 nonn
%O A294469 0,3
%A A294469 _Seiichi Manyama_, Oct 31 2017