cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294473 Sum of the areas of the squares on the sides of the distinct rectangles that can be made with positive integer sides such that L + W = n, W < L.

This page as a plain text file.
%I A294473 #30 Jul 05 2025 18:11:08
%S A294473 0,0,10,20,60,92,182,248,408,520,770,940,1300,1540,2030,2352,2992,
%T A294473 3408,4218,4740,5740,6380,7590,8360,9800,10712,12402,13468,15428,
%U A294473 16660,18910,20320,22880,24480,27370,29172,32412,34428,38038,40280,44280,46760,51170
%N A294473 Sum of the areas of the squares on the sides of the distinct rectangles that can be made with positive integer sides such that L + W = n, W < L.
%H A294473 Colin Barker, <a href="/A294473/b294473.txt">Table of n, a(n) for n = 1..1000</a>
%H A294473 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F A294473 a(n) = 2 * Sum_{i=1..floor((n-1)/2)} i^2 + (n-i)^2.
%F A294473 a(n) = 2 * A294286(n).
%F A294473 From _Colin Barker_, Oct 31 2017: (Start)
%F A294473 G.f.: 2*x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3).
%F A294473 a(n) = n*(8*n^2 - 18*n + 4) / 12 for n even.
%F A294473 a(n) = n*(8*n^2 - 12*n + 4) / 12 for n odd.
%F A294473 a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. (End)
%F A294473 a(n) = n*(2*n-3-(-1)^n)*(8*n-3+(-1)^n)/24. - _Wesley Ivan Hurt_, Dec 02 2023
%F A294473 E.g.f.: x*(x*(3 + 4*x)*cosh(x) - (3 - 6*x - 4*x^2)*sinh(x))/6. - _Stefano Spezia_, May 19 2025
%e A294473 a(14) = 1540; the rectangles are 1 X 13, 2 X 12, 3 X 11, 4 X 10, 5 X 9, 6 X 8 (7 X 7 is not considered since W < L). The sum of the areas of the squares on the sides of the rectangles is 2*1^2+2*13^2 + 2*2^2+2*12^2 + 2*3^2+2*11^2 + 2*4^2+2*10^2 + 2*5^2+2*9^2 + 2*6^2+2*8^2 = 340 + 296 + 260 + 232 + 212 + 200 = 1540.
%t A294473 Table[2 Sum[i^2 + (n - i)^2, {i, Floor[(n-1)/2]}], {n, 40}]
%t A294473 LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,0,10,20,60,92,182},50] (* _Harvey P. Dale_, Jul 05 2025 *)
%o A294473 (PARI) concat(vector(2), Vec(2*x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ _Colin Barker_, Oct 31 2017
%o A294473 (PARI) a(n) = 2*sum(i=1, (n-1)\2, i^2 + (n-i)^2); \\ _Michel Marcus_, Nov 08 2017
%o A294473 (Magma) [n*(2*n-3-(-1)^n)*(8*n-3+(-1)^n)/24: n in [1..60]]; // _Wesley Ivan Hurt_, Dec 02 2023
%Y A294473 Cf. A294286, A050187, A294457.
%K A294473 nonn,easy
%O A294473 1,3
%A A294473 _Wesley Ivan Hurt_, Oct 31 2017