This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294487 #24 Dec 09 2023 22:56:58 %S A294487 0,0,2,3,3,5,5,12,12,7,7,18,18,24,24,24,24,41,41,60,60,49,49,72,72,59, %T A294487 59,59,59,88,88,119,119,102,102,102,102,120,120,120,120,161,161,204, %U A294487 204,181,181,228,228,228,228,228,228,281,281,281,281,252,252,311 %N A294487 Sum of the lengths of the distinct rectangles with prime length and integer width such that L + W = n, W < L. %C A294487 Sum of the largest parts of the partitions of n into two distinct parts with largest part prime. %H A294487 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A294487 a(n) = Sum_{i=1..floor((n-1)/2)} (n-i) * A010051(n-i). %F A294487 a(n) = n*A294602(n) - A368058(n). - _Wesley Ivan Hurt_, Dec 09 2023 %e A294487 a(14) = 24; the rectangles are 1 X 13 and 3 X 11 (7 X 7 is not considered since W < L). The sum of the lengths is then 13 + 11 = 24. %t A294487 Table[ Sum[(n - i)*(PrimePi[n - i] - PrimePi[n - i - 1]), {i, Floor[(n-1)/2]}], {n, 60}] %o A294487 (PARI) a(n) = sum(i=1, (n-1)\2, (n-i)*isprime(n-i)); \\ _Michel Marcus_, Nov 08 2017 %Y A294487 Cf. A010051, A243485, A294602, A368058. %K A294487 nonn,easy %O A294487 1,3 %A A294487 _Wesley Ivan Hurt_, Oct 31 2017