cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294492 Numbers m that set records for the ratio A045763(n)/n.

This page as a plain text file.
%I A294492 #19 Nov 22 2017 03:18:51
%S A294492 1,6,10,14,18,22,26,30,42,60,66,78,90,102,114,126,138,150,210,330,390,
%T A294492 420,510,570,630,1050,1470,2310,4620,6930,11550,16170,25410,30030,
%U A294492 60060,90090,150150,210210,330330,390390,510510,1021020,1531530,2552550,3573570
%N A294492 Numbers m that set records for the ratio A045763(n)/n.
%C A294492 These numbers have an increasing proportion of nondivisors in the cototient (A051953(n)) with respect to n.
%C A294492 In other words, these numbers have an increasing proportion of smaller numbers that are counted neither by tau or phi.
%C A294492 Conjectures:
%C A294492 1. Let k = any product of primorial A002110(i - 1) and the smallest i primes. All terms m are in A002110 or of the form k*p, with prime p >= prime(i) such that k < A002110(i + 1).
%C A294492 2. For m >= A002110(5) = 2310, all terms m are in A002110 or of the form prime p * A002110(i), with prime(1) <= p <= prime(i).
%H A294492 Michael De Vlieger, <a href="/A294492/b294492.txt">Table of n, a(n) for n = 1..53</a>
%H A294492 Michael De Vlieger, <a href="/A294492/a294492.txt">Numbers m that set records for the ratio A045763(n)/n.</a>
%e A294492 1 is in the sequence since 1 is coprime to and a divisor of all numbers, therefore it has no nondivisors in the cototient, i.e., A045763(1)/1 = 0. The primes have no nondivisors in the cototient, 4 only has divisors in the cototient.
%e A294492 6 has the nondivisor 4 in the cototient, thus 1/6, thus it appears after 1 in the sequence. The following numbers do not appear, as 7 has none, 8 has one (6), 9 has one (6).
%e A294492 10 has the nondivisors (4,6,8) in the cototient, thus 3/10. Since 3/10 > 1/6, 10 is the next number in the sequence.
%e A294492 Table of terms less than A002110(6):
%e A294492 b(n) = A045763(n), c(n) = exponents of the smallest primes such that the product = n, e.g., "2 1 0 1" = 2^2 * 3^1 * 5^0 * 7^1 = 126.
%e A294492    n    a(n)   b(n) c(n)
%e A294492    1      1      0  0
%e A294492    2      6      1  1 1
%e A294492    3     10      3  1 0 1
%e A294492    4     14      5  1 0 0 1
%e A294492    5     18      7  1 2
%e A294492    6     22      9  1 0 0 0 1
%e A294492    7     26     11  1 0 0 0 0 1
%e A294492    8     30     15  1 1 1
%e A294492    9     42     23  1 1 0 1
%e A294492   10     60     33  2 1 1
%e A294492   11     66     39  1 1 0 0 1
%e A294492   12     78     47  1 1 0 0 0 1
%e A294492   13     90     55  1 2 1
%e A294492   14    102     63  1 1 0 0 0 0 1
%e A294492   15    114     71  1 1 0 0 0 0 0 1
%e A294492   16    126     79  1 2 0 1
%e A294492   17    138     87  1 1 0 0 0 0 0 0 1
%e A294492   18    150     99  1 1 2
%e A294492   19    210    147  1 1 1 1
%e A294492   20    330    235  1 1 1 0 1
%e A294492   21    390    279  1 1 1 0 0 1
%e A294492   22    420    301  2 1 1 1
%e A294492   23    510    367  1 1 1 0 0 0 1
%e A294492   24    570    411  1 1 1 0 0 0 0 1
%e A294492   25    630    463  1 2 1 1
%e A294492   26   1050    787  1 1 2 1
%e A294492   27   1470   1111  1 1 1 2
%e A294492   28   2310   1799  1 1 1 1 1
%e A294492   29   4620   3613  2 1 1 1 1
%e A294492   30   6930   5443  1 2 1 1 1
%e A294492   31  11550   9103  1 1 2 1 1
%e A294492   32  16170  12763  1 1 1 2 1
%e A294492   33  25410  20083  1 1 1 1 2
%p A294492 with(numtheory): P:=proc(q) local a,b,n; a:=-1; for n from 1 to q do
%p A294492 b:=n+1-tau(n)-phi(n); if b>a then a:=b; print(n); fi; od; end: P(10^2);
%p A294492 # _Paolo P. Lava_, Nov 17 2017
%t A294492 With[{s = Array[(# - (DivisorSigma[0, #] + EulerPhi@ # - 1))/# &, 10^6]}, FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]]
%Y A294492 Cf. A002110, A045763, A051953.
%K A294492 nonn
%O A294492 1,2
%A A294492 _Michael De Vlieger_, Nov 01 2017