This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294498 #20 Jan 06 2023 15:45:33 %S A294498 1,1,0,1,1,0,1,2,2,0,1,3,6,5,0,1,4,12,22,14,0,1,5,20,57,92,42,0,1,6, %T A294498 30,116,306,424,132,0,1,7,42,205,752,1806,2108,429,0,1,8,56,330,1550, %U A294498 5328,11508,11134,1430,0,1,9,72,497,2844,12730,40632,78147,61748,4862,0 %N A294498 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k. %C A294498 A(n,k) is the k-fold exponential convolution of Catalan numbers with themselves, evaluated at n. %H A294498 Alois P. Heinz, <a href="/A294498/b294498.txt">Antidiagonals for n = 0..150, flattened</a> %F A294498 E.g.f. of column k: exp(2*k*x)*(BesselI(0,2*x) - BesselI(1,2*x))^k. %e A294498 E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(k + 1)*x^2/2! + k*(k^2 + 3*k + 1)*x^3/3! + k^2*(k^2 + 6*k + 7)*x^4/4! + k*(k^4 + 10*k^3 + 25*k^2 + 10*k - 4)*x^5/5! + ... %e A294498 Square array begins: %e A294498 1, 1, 1, 1, 1, 1, ... %e A294498 0, 1, 2, 3, 4, 5, ... %e A294498 0, 2, 6, 12, 20, 30, ... %e A294498 0, 5, 22, 57, 116, 205, ... %e A294498 0, 14, 92, 306, 752, 1550, ... %e A294498 0, 42, 424, 1806, 5328, 12730, ... %p A294498 C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: %p A294498 A:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, C(n), %p A294498 (h-> add(binomial(n, j)*A(j, h)*A(n-j, k-h), j=0..n))(iquo(k, 2)))) %p A294498 end: %p A294498 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Jan 06 2023 %t A294498 Table[Function[k, n! SeriesCoefficient[Exp[2 k x] (BesselI[0, 2 x] - BesselI[1, 2 x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %Y A294498 Columns k=0..3 give A000007, A000108, A014330, A014333. %Y A294498 Rows n=0..2 give A000012, A001477, A002378. %Y A294498 Main diagonal gives A294511. %Y A294498 Cf. A009766, A033184. %K A294498 nonn,tabl %O A294498 0,8 %A A294498 _Ilya Gutkovskiy_, Nov 01 2017