cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294501 Inverse binomial transform of the number of planar partitions (A000219).

This page as a plain text file.
%I A294501 #11 Aug 20 2018 07:51:31
%S A294501 1,0,2,-1,4,-7,19,-48,123,-304,728,-1694,3865,-8735,19739,-44875,
%T A294501 102818,-236939,546988,-1260023,2888607,-6584008,14927816,-33714166,
%U A294501 75976024,-171095098,385405617,-868708176,1959010348,-4417777937,9957188242,-22420045445
%N A294501 Inverse binomial transform of the number of planar partitions (A000219).
%H A294501 Vaclav Kotesovec, <a href="/A294501/b294501.txt">Table of n, a(n) for n = 0..3000</a>
%F A294501 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000219(k).
%F A294501 G.f.: (1/(1 + x))*exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 + x)^k)). - _Ilya Gutkovskiy_, Aug 20 2018
%t A294501 nmax = 40; s = CoefficientList[Series[Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[(-1)^(n-k) * Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
%Y A294501 Cf. A281425, A293467, A294500, A294503, A294505.
%K A294501 sign
%O A294501 0,3
%A A294501 _Vaclav Kotesovec_, Nov 01 2017