This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294508 #15 Nov 08 2017 11:19:32 %S A294508 0,1,1,2,1,0,2,2,1,2,3,1,0,2,0,3,2,1,3,1,2,4,2,0,1,-1,1,-1,4,2,1,3,0, %T A294508 3,0,2,4,3,1,3,2,4,2,4,6,4,4,2,4,3,5,3,6,8,9,5,3,1,4,1,3,1,3,5,9,5,5, %U A294508 4,1,5,2,5,3,4,8,10,7,9,6,3,0,3,0,3,0,3,6,7,4,6,3,6,3,1,4,1,5,1,5,6,10,6,9,6,8 %N A294508 Regular triangular array read by rows: T(n,m) = pi(n*m) - pi(n)*pi(m) for n > 0 and 0 < m <= n. %C A294508 Inspired by A291440. %C A294508 Mincu and Panaitopol (2008) prove that pi(m*n) >= pi(m)*i(n) for all positive m and n except for m = 5, n = 7; m = 7, n = 5; and m = n = 7. %C A294508 a(i) = -1 for i = 26 and 28, when n = 7 and m = either 5 or 7. %C A294508 a(i) = 0 for i = 1, 6, 13, 15, 24, 33, 35, 81, 83, 85, 174, 176, 178; when n=m=1; n=m=3; n=5 and m is either 3 or 5; n=7 and m=3; n=8 and m is either 5 or 7; n=13 and m is either 3, 5, or 7; and n=19 with m being either 3, 5 or 7. %C A294508 First occurrence of k = -1, 0, 1, 2, .., 20, 21, etc. occurs at i = 26, 1, 2, 4, 11, 22, 51, 45, 77, 54, 55, 76, 115, 120, 130, 187, 168, 135, 171, 136, 169, 274, etc. %C A294508 Last occurrence of k >= -1 occurs at i = 28, 178, 260, 499, 906, 1179, 2704, 2778, 3406, 6558, 6673, 6789, 7024, 9594, 9733, 10156, 11479, 19704, 19903, 20304, 20709, 20913, etc. %C A294508 Conjecture: min_{1<=m<=n} T(n,m) <= T(n,M) for all M > n if n <> 5. %H A294508 Gabriel Mincu and Laurentiu Panaitopol, <a href="https://www.emis.de/journals/JIPAM/article951.html">Properties of some functions connected to prime numbers</a>, J. Inequal. Pure Appl. Math., 9 No. 1 (2008), Art. 12. %F A294508 a(n*(n+1)/2) = T(n,n) = A291440(n). %F A294508 min_{1<=m<=n} a(n*(n-1)/2 + m) = min_{1<=m<=n} T(n,m) = A294509(n). %e A294508 a(19) = 3 since 19 = 5*6/2 + 4, so the 19th term is T(6,4) = pi(6*4) - pi(6)*pi(4) = 9 - 3*2 = 3. %e A294508 Triangular array begins: %e A294508 n\ m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A294508 1 0 %e A294508 2 1 1 %e A294508 3 2 1 0 %e A294508 4 2 2 1 2 %e A294508 5 3 1 0 2 0 %e A294508 6 3 2 1 3 1 2 %e A294508 7 4 2 0 1 -1 1 -1 %e A294508 8 4 2 1 3 0 3 0 2 %e A294508 9 4 3 1 3 2 4 2 4 6 %e A294508 10 4 4 2 4 3 5 3 6 8 9 %e A294508 11 5 3 1 4 1 3 1 3 5 9 5 %e A294508 12 5 4 1 5 2 5 3 4 8 10 7 9 %e A294508 13 6 3 0 3 0 3 0 3 6 7 4 6 3 %e A294508 14 6 3 1 4 1 5 1 5 6 10 6 9 6 8 %e A294508 15 6 4 2 5 3 6 3 6 8 11 8 11 8 10 12 %t A294508 t[n_, m_] := PrimePi[n*m] - PrimePi[n]*PrimePi[m]; Table[ t[n, m], {n, 13}, {m, n}] // Flatten %o A294508 (PARI) T(n,m) = primepi(n*m) - primepi(n)*primepi(m); %o A294508 tabl(nn) = for (n=1, nn, for (m=1, n, print1(T(n,m), ", ")); print); \\ _Michel Marcus_, Nov 08 2017 %Y A294508 Cf. A000720, A291440, A294509. %K A294508 sign,tabl %O A294508 1,4 %A A294508 _Jonathan Sondow_ and _Robert G. Wilson v_, Nov 06 2017