This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294511 #13 Jan 06 2023 15:58:47 %S A294511 1,1,6,57,752,12730,263172,6427239,181073552,5780683422,206236365320, %T A294511 8131806499806,351152348814720,16481622338583844,835440526931000200, %U A294511 45483669552645222975,2646983711809388956320,163980758725017626674422,10774158375350926668928248 %N A294511 a(n) = n! * [x^n] exp(2*n*x)*(BesselI(0,2*x) - BesselI(1,2*x))^n. %H A294511 Alois P. Heinz, <a href="/A294511/b294511.txt">Table of n, a(n) for n = 0..369</a> %F A294511 a(n) = A294498(n,n). %F A294511 a(n) ~ c * d^n * n^n, where d = 1.38107962281156411118368063513315508389931... and c = 0.822562099033048851679532590998951521... - _Vaclav Kotesovec_, Nov 13 2017 %F A294511 a(n) mod 2 = 1 <=> n in { A000225 }. - _Alois P. Heinz_, Jan 06 2023 %p A294511 C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: %p A294511 b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, C(n), %p A294511 (h-> add(binomial(n, j)*b(j, h)*b(n-j, k-h), j=0..n))(iquo(k, 2)))) %p A294511 end: %p A294511 a:= n-> b(n$2): %p A294511 seq(a(n), n=0..20); # _Alois P. Heinz_, Jan 06 2023 %t A294511 Table[n! SeriesCoefficient[Exp[2 n x] (BesselI[0, 2 x] - BesselI[1, 2 x])^n, {x, 0, n}], {n, 0, 19}] %Y A294511 Main diagonal of A294498. %Y A294511 Cf. A000108, A000225. %K A294511 nonn %O A294511 0,3 %A A294511 _Ilya Gutkovskiy_, Nov 01 2017