cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294512 Denominators of partial sums of the reciprocals of octagonal numbers.

This page as a plain text file.
%I A294512 #13 Nov 12 2017 08:11:55
%S A294512 1,8,168,420,5460,14560,276640,3043040,136936800,136936800,4245040800,
%T A294512 72165693600,2670130663200,2670130663200,114815618517600,
%U A294512 1320379612952400,9242657290666800,3080885763555600,280080523959600,8122335194828400,165154148961510800,14533565108612950400,973748862277067676800
%N A294512 Denominators of partial sums of the reciprocals of octagonal numbers.
%C A294512 The corresponding numerators are given in A250401.
%C A294512 The octagonal numbers are here A000567(k+1) = (k + 1)*(3*k + 1), k >= 0.
%C A294512 In general the partial sums V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits are of interest for series Sum_{k>=1} a(k)/k with a periodic sequence a(r + m*k) = a(r), r = 1..m, k >= 1, and Sum_{r=1..m} a(r) = 0. Such sequences were considered by Euler in his Introductio in Analysin Infinitorum (1748). See the Koecher reference. Namely, Sum_{k>=1} a(k)/k = Sum_{r=1..m-1} a(r)*v_m(r) with v_m(r) = ((m-r)/m)*lim_{n -> oo} V(m,r,n).
%C A294512 The general formula is m*v_m(r) = log(m) + (Pi/2)*cot(Pi*r/m) - Sum_{s=1..m-1} cos(2*Pi*r*s/m)*log(2*sin((Pi*s)/m)), r = 1..m-1. (Koecher, Satz, p. 191.)
%C A294512 Here the instance m = 3, r = 1 is considered with V(3,1;n) = Sum_{k=0..n} 1/((k + 1)*(3*k + 1)) and lim_{n -> oo} V(3,1;n) = (Pi/sqrt(3) + 3*log(3))/4 with its decimal expansion 1.277409057... given in A244645.
%D A294512 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.
%F A294512 a(n) = denominator(V(3,1;n)) with V(3,1;n) = Sum_{k=0..n} 1/((k + 1)*(3*k + 1)) = (1/2)*Sum_{k=0..n} (3/(3*k + 1) - 1/(k+1)), n >= 0.
%F A294512 a(n) = A250400(n+1)/(n+1), n >= 0. [conjecture].
%e A294512 The rationals V(3,1;n) begin: 1, 9/8, 197/168, 503/420, 6623/5460, 17813/14560, 340527/276640, 3763087/3043040, 169947523/136936800, 170436583/136936800, ...
%e A294512 V(3,1,10^4) = 1.2773757281147540626 (Maple 20 digits) to be compared with 1.2774090575596367312 (20 digits from A244645).
%e A294512 The series is V(3,1) =  1 + 1/(2*4) + 1/(3*6) + 1/(4*10) + ... .
%t A294512 Denominator@ Accumulate@ Array[1/PolygonalNumber[8, #] &, 23] (* _Michael De Vlieger_, Nov 01 2017 *)
%Y A294512 Cf. A000567, A244645, A250400, A250401.
%K A294512 nonn,frac,easy
%O A294512 0,2
%A A294512 _Wolfdieter Lang_, Nov 01 2017