cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294513 Denominators of the partial sums of the reciprocals of twice the pentagonal numbers.

This page as a plain text file.
%I A294513 #10 Nov 12 2017 08:07:29
%S A294513 2,5,120,1320,9240,52360,52360,602140,70450380,2043061020,16344488160,
%T A294513 3268897632,62109055008,2546471255328,1157486934240,54401885909280,
%U A294513 272009429546400,4805499921986400,4805499921986400,283524495397197600,418536159872053600
%N A294513 Denominators of the partial sums of the reciprocals of twice the pentagonal numbers.
%C A294513 The corresponding numerators are given by A250328(n+1), n >= 0.
%C A294513 Twice the positive pentagonal numbers are A049450(k+1) = (k+1)*(3*k+2), k >= 0.
%C A294513 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [3,2].
%C A294513 The limit of the series is V(3,2) = lim_{n -> oo} V(3,2;n) = (3/2)*log(3) - Pi/(2*sqrt(3)) = 0.74101875088505561179... given in A294514.
%D A294513 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193 (with v_m(r) = ((m-r)/m)*V(m,r)).
%F A294513 a(n) = denominator(V(3,2;n)) with V(3,2;n) = Sum_{k=0..n} 1/((k + 1)*(3*k + 2)) = Sum_{k=0..n} 1/A049450(k+1) = Sum_{k=0..n} (3/(3*k + 2) - 1/(k+1)).
%F A294513 a(n) = 2*A250327(n+1)/(n+1) [conjecture].
%e A294513 The rationals V(3,2;n), n >= 0, begin: 1/2, 3/5, 77/120, 877/1320, 6271/9240, 36049/52360, 36423/52360, 422137/602140, 49691099/70450380, 1448086909/2043061020, ...
%e A294513 V(3,2;10^4) = 0.7409854223(Maple, 10 digits) to be compared with 0.7410187513 from V(3,2) given in A294514.
%e A294513 Conjecture tests: a(0) = 2 =  A250327(1)/1, 2* a(1) = 5 = 2*A250327(2)/2 = A250327(2), a(2) = 120 = 2*A250327(2)/3 = 2*180/3, ...
%t A294513 Denominator@ Accumulate@ Array[1/(2 PolygonalNumber[5, #]) &, 21] (* _Michael De Vlieger_, Nov 02 2017 *)
%Y A294513 Cf. A049450, A250327(n+1), A250328(n+1), A294512.
%K A294513 nonn,frac,easy
%O A294513 0,1
%A A294513 _Wolfdieter Lang_, Nov 02 2017