cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294515 Denominators of partial sums of the reciprocals of the decagonal numbers.

This page as a plain text file.
%I A294515 #26 Nov 23 2024 19:36:06
%S A294515 1,10,270,7020,119340,835380,4176900,242260200,888287400,32866633800,
%T A294515 1347531985800,4042595957400,28298171701800,1499803100195400,
%U A294515 28496258903712600,3476543586252937200,3476543586252937200,26653500827939185200,1945705560439560519600,1945705560439560519600,52534050131868134029200
%N A294515 Denominators of partial sums of the reciprocals of the decagonal numbers.
%C A294515 The corresponding numerators are given by A250551(n+1), n >= 0.
%C A294515 The positive decagonal numbers are A001107(k+1) = (k + 1)*(4*k + 1), k >= 0.
%C A294515 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [4,1].
%C A294515 The limit of the series is V(4,1) = lim_{n -> oo} V(4,1;n) = log(2) + Pi/6 = 1.216745956158244182... given in A244647.
%D A294515 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.
%H A294515 Robert Israel, <a href="/A294515/b294515.txt">Table of n, a(n) for n = 0..866</a>
%F A294515 a(n) = denominator(V(4,1;n)) with V(4,1;n) = Sum_{k=0..n} 1/((k + 1)*(4*k + 1)) = Sum_{k=0..n} 1/A001107(n+1) = (1/3)*Sum_{k=0..n} (4/(4*k + 1) - 1/(k+1)).
%F A294515 a(n) = A250550(n+1)/(n+1) [conjecture].
%F A294515 In the Koecher reference v_4(1) = (3/4)*V(4,1) = (3/4)*log(2) + Pi/8 = 0.91255946711868313687... .
%e A294515 The rationals V(4,1;n), n >= 0, begin: 1, 11/10, 307/270, 8117/7020, 139393/119340, 982381/835380, 4935773/4176900, 287319059/242260200, 1056494083/888287400, 39179109811/32866633800, ...
%e A294515 V(4,1;10^4) = 1.216720959 (Maple, 10 digits) to be compared with 1.216745956 from V(4,1) from A244647.
%p A294515 map(denom,ListTools:-PartialSums([seq(1/((k+1)*(4*k+1)),k=0..50)])); # _Robert Israel_, Nov 08 2017
%t A294515 Denominator@ Accumulate@ Array[1/PolygonalNumber[10, #] &, 23] (* _Michael De Vlieger_, Nov 02 2017 *)
%Y A294515 Cf. A001107, A244647, A250550, A250551.
%K A294515 nonn,frac,easy
%O A294515 0,2
%A A294515 _Wolfdieter Lang_, Nov 02 2017