This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294518 #13 May 31 2021 03:24:47 %S A294518 5,0,8,6,4,5,2,1,4,8,8,4,9,3,9,3,0,9,0,2,0,3,7,4,6,7,2,7,3,4,7,7,8,2, %T A294518 6,2,1,2,7,9,1,5,7,0,3,3,9,3,2,1,2,8,5,1,8,7,4,5,6,7,7,3,2,3,2,6,2,7, %U A294518 2,6,6,2,7,6,5,9,7,9,6,4,7,5,0,3,5,7,2,5,6,8,3,1,8,1,9,7,5,2,8,6 %N A294518 Decimal expansion of 3*log(2) - Pi/2. %C A294518 This is the value of the series V(4,3) = lim_{n->oo} V(4,3;n) with the partial sums V(4,3;n) = Sum_{k=0..n} 1/((k + 1)*(4*k + 3)) = Sum_{k=0..n} 1/A033991(k+1) = Sum_{k=0..n} (4/(4*k + 3) - 1/(k+1)) = A294516(n)/A294517(n). %C A294518 In the Koecher reference v_4(3) = (1/4)*V(4,3) = (3/4)*log(2) + Pi/8 = 0.1271613037212348272550... %D A294518 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189-193. %F A294518 V(4,3) = 3*log(2) - Pi/2. %F A294518 Equals Sum_{k>=2} zeta(k)/4^(k-1). - _Amiram Eldar_, May 31 2021 %e A294518 0.5086452148849393090203746727347782621279157033... %t A294518 RealDigits[3*Log[2] - Pi/2, 10, 100][[1]] (* _Amiram Eldar_, May 31 2021 *) %Y A294518 Cf. A033991, A294516/A294517. %K A294518 nonn,cons %O A294518 0,1 %A A294518 _Wolfdieter Lang_, Nov 07 2017