A294519 Convolution triangle for Chebyshev S polynomials (rising powers).
1, 0, 2, -2, 0, 3, 0, -6, 0, 4, 3, 0, -12, 0, 5, 0, 12, 0, -20, 0, 6, -4, 0, 30, 0, -30, 0, 7, 0, -20, 0, 60, 0, -42, 0, 8, 5, 0, -60, 0, 105, 0, -56, 0, 9, 0, 30, 0, -140, 0, 168, 0, -72, 0, 10, -6, 0, 105, 0, -280, 0, 252, 0, -90, 0, 11, 0, -42, 0, 280, 0, -504, 0, 360, 0, -110, 0, 12, 7, 0, -168, 0, 630, 0, -840, 0, 495, 0, -132, 0, 13
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 0: 1 1: 0 2 2: -2 0 3 3: 0 -6 0 4 4: 3 0 -12 0 5 5: 0 12 0 -20 0 6 6: -4 0 30 0 -30 0 7 7: 0 -20 0 60 0 -42 0 8 8: 5 0 -60 0 105 0 -56 0 9 9: 0 30 0 -140 0 168 0 -72 0 10 10: -6 0 105 0 -280 0 252 0 -90 0 11 11: 0 -42 0 280 0 -504 0 360 0 -110 0 12 12: 7 0 -168 0 630 0 -840 0 495 0 -132 0 13 ...
Formula
T(n, m) = [x^m] S1(n, x), with the first convolution S1 of the Chebyshev S polynomials. See a comment above.
T(n, m) = 0 if n-m is odd and T(n, m) = (-1)^((n-m)/2)*((n-m)/2 + 1)*binomial(n - (n-m)/2 +1, (n-m)/2 +1) = (-1)^((n-m)/2)*(n - (n-m)/2 + 1)* binomial(n - (n-m)/2, (n-m)/2) if n-m is even.
O.g.f. of {S1(n, x)}_{n >= 0} is G1(z,x) = (1/(1 - x*z + z^2))^2.
Comments