cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294520 Numerators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.

This page as a plain text file.
%I A294520 #17 Feb 16 2025 08:33:51
%S A294520 1,13,49,795,84179,366829,11417459,103067441,4235695001,97604192047,
%T A294520 1661825059679,1663957022369,101611584435869,101706166053389,
%U A294520 7226964017429851,17176158550059533,154681745346189277,6654999228519884521,6658297729691103841,21316057915886595965,2153790894613123442641
%N A294520 Numerators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.
%C A294520 The corresponding denominators are given in A294521.
%C A294520 For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,1].
%C A294520 The limit of the series is V(5,1) = lim_{n -> oo} V(5,1;n) = ((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8, with the golden section phi:= (1 + sqrt(5))/2. The value is 1.17795605792266... given in A244649.
%D A294520 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
%H A294520 G. C. Greubel, <a href="/A294520/b294520.txt">Table of n, a(n) for n = 0..600</a>
%H A294520 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>
%F A294520 a(n) = numerator(V(5,1;n)) with V(5,1;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 1)) = Sum_{k=0..n} 1/A051624(k+1) = (1/4)*Sum_{k=0..n} (1/(k + 1/5) - 1/(k+1)) = (-Psi(1/5) + Psi(n+6/5) - (gamma + Psi(n+2)))/4, with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
%e A294520 The rationals V(5,1;n), n >= 0, begin: 1, 13/12, 49/44, 795/704, 84179/73920, 366829/320320, 11417459/9929920, 103067441/89369280, 4235695001/3664140480, 97604192047/84275231040, 1661825059679/1432678927680, ...
%e A294520 V(5,1;10^6) = 1.177956058 (Maple, 10 digits) to be compared with 1.177956058 obtained from V(5,1) given in A244649.
%t A294520 Table[Numerator[Sum[1/((k + 1)*(5*k + 1)), {k, 0, n}]], {n, 0, 30}] (* _G. C. Greubel_, Aug 29 2018 *)
%o A294520 (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 1)))); \\ _Michel Marcus_, Nov 15 2017
%o A294520 (Magma) [Numerator((&+[1/((k+1)*(5*k+1)): k in [0..n]])): n in [0..25]]; // _G. C. Greubel_, Aug 29 2018
%Y A294520 Cf. A001620, A051624, A244649, A294512, A294516/A294517, A294521.
%K A294520 nonn,frac,easy
%O A294520 0,2
%A A294520 _Wolfdieter Lang_, Nov 15 2017