cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294521 Denominators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.

This page as a plain text file.
%I A294521 #9 Nov 16 2017 12:14:37
%S A294521 1,12,44,704,73920,320320,9929920,89369280,3664140480,84275231040,
%T A294521 1432678927680,1432678927680,87393414588480,87393414588480,
%U A294521 6204932435782080,14736714534982440,132630430814841960,5703108525038204280,5703108525038204280,18249947280122253696,1843244675292347623296
%N A294521 Denominators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.
%C A294521 The corresponding numerators are given in A294520. Details are found there.
%F A294521 a(n) = denominator(V(5,1;n)) with V(5,1;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 1)) = Sum_{k=0..n} 1/A051624(k+1) = (1/4)*Sum_{k=0..n} (1/(k + 1/5) - 1/(k+1)). For the formula in terms of the digamma function see A294520.
%e A294521 See A294520 for the rationals.
%o A294521 (PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 1)))); \\ _Michel Marcus_, Nov 15 2017
%Y A294521 Cf. A294520.
%K A294521 nonn,frac,easy
%O A294521 0,2
%A A294521 _Wolfdieter Lang_, Nov 15 2017